
Accession Number : ADA328266
Title : Optimal Line Fitting Using Genetic Algorithms.
Descriptive Note : Technical rept.,
Corporate Author : PENNSYLVANIA STATE UNIV UNIVERSITY PARK CENTER FOR MULTIVARIATE ANALYSIS
Personal Author(s) : Pittman, Jennifer ; Murthy, C. A.
PDF Url : ADA328266
Report Date : JUL 1997
Pagination or Media Count : 29
Abstract : Genetic algorithms are computational techniques which, given an optimization problem, use elements of directed and stochastic search to find the 'best' solution from the space of potential solutions. We apply GA's to the problem of fitting the minimum leastsquares piecewise linear function to a set of data points in R(2) . We assume that the number of pieces is known but the knot locations are unknown. The effectiveness of our algorithm is demonstrated with two examples. Results are found to be quite promising and encourage further research.
Descriptors : *ALGORITHMS, *LEAST SQUARES METHOD, DATA BASES, MATHEMATICAL MODELS, NEURAL NETS, OPTIMIZATION, STOCHASTIC PROCESSES, DATA MANAGEMENT, MULTIVARIATE ANALYSIS, APPROXIMATION(MATHEMATICS), CUBIC SPLINE TECHNIQUE, CURVE FITTING.
Subject Categories : Numerical Mathematics
Operations Research
Distribution Statement : APPROVED FOR PUBLIC RELEASE