Accession Number : ADA329328

Title :   A Scalable Parallel Cell-Projection Volume Rendering Algorithm for Three-Dimensional Unstructured Data

Descriptive Note : Contractor rept.

Corporate Author : INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING HAMPTON VA

Personal Author(s) : Ma, Kwan-Liu ; Crockett, Thomas W.

PDF Url : ADA329328

Report Date : AUG 1997

Pagination or Media Count : 22

Abstract : Visualizing three-dimensional unstructured data from aerodynamics calculations is challenging because the associated meshes are typically large in size and irregular in both shape and resolution. The goal of this research is to develop a fast, efficient parallel volume rendering algorithm for massively parallel distributed-memory supercomputers consisting of a large number of very powerful processors. We use cell-projection instead of ray-casting to provide maximum flexibility in the data distribution and rendering steps. Effective static load balancing is achieved with a round robin distribution of data cells among the processors. A spatial partitioning tree is used to guide the rendering, optimize the image compositing step, and reduce memory consumption. Communication cost is reduced by buffering messages and by overlapping communication with rendering calculatious as much as possible. Tests on the IBM SP2 demonstrate that these strategies provide high rendering rates and good scalability. For a dataset containing half a million tetrahedral cells, we achieve two frames per second for a 400x400-pixel image using 128 processors.

Descriptors :   *ALGORITHMS, *SUPERCOMPUTERS, DATA PROCESSING, VOLUME, COMPUTATIONS, DISTRIBUTION, STATIC LOADS, GRIDS, MEMORY DEVICES, THREE DIMENSIONAL, TOPOLOGY, PARALLEL ORIENTATION, AERODYNAMICS.

Subject Categories : Computer Hardware

Distribution Statement : APPROVED FOR PUBLIC RELEASE