Accession Number : ADA334729

Title :   Application of Parallel Processing to the Investigation of Supercritical Droplet Evaporation and Combustion Using Molecular Dynamics

Descriptive Note : Final rept. 15 Jan 94-31 May 97

Corporate Author : PENNSYLVANIA STATE UNIV UNIVERSITY PARK DEPT OF AEROSPACE ENGINEERING

Personal Author(s) : Micci, Michael M. ; Long, Lyle N.

PDF Url : ADA334729

Report Date : 24 OCT 1997

Pagination or Media Count : 12

Abstract : Molecular dynamics (MD) implemented on parallel processors was used to model supercritical droplet phenomena occurring in combustion devices. The use of molecular dynamics allows the modeling of supercritical phenomena without an a priori knowledge of the equation of state or transport properties of the individual components or the mixture. Three-dimensional supercritical oxygen vaporization into gaseous oxygen and helium using two-site Lennard-Jones potentials for the oxygen has been modeled and both the disappearance of surface tension above the critical point and the modification of the critical point for a binary mixture have been observed. A distinct change in droplet morphology was observed when passing through its critical point. The droplet remains spherical as it vaporizes under subcritical conditions but becomes broken and cloud-like when supercritical. Equations of state and transport coefficients for mass, momentum and energy have been calculated for supercritical argon, nitrogen and oxygen which agree with NIST values.

Descriptors :   *PARALLEL PROCESSING, *COMBUSTION, *DROPS, *SUPERCRITICAL FLOW, MODELS, MORPHOLOGY, NITROGEN, GASES, OXYGEN, THREE DIMENSIONAL, TRANSPORT PROPERTIES, HELIUM, EVAPORATION, ARGON, MOLECULAR PROPERTIES, MOMENTUM, EQUATIONS OF STATE, SURFACE TENSION, VAPORIZATION.

Subject Categories : Physical Chemistry
      Atomic and Molecular Physics and Spectroscopy
      Combustion and Ignition

Distribution Statement : APPROVED FOR PUBLIC RELEASE