Accession Number : ADP000288

Title :   The Relaxation Zone Behind Normal Shock Waves in a Reacting Dusty Gas. Part 1. Monatomic Gases,

Corporate Author : BEN-GURION UNIV OF THE NEGEV BEERSHEBA (ISRAEL) DEPT OF MECHANICAL ENGINEERING

Personal Author(s) : Ben-Dor,Gabi ; Igra,Ozer

Report Date : JUL 1981

Pagination or Media Count : 9

Abstract : The conservation equations for a suspension composed of an ionized gas and small solid dust particles are formulated and solved numerically. Such flows can be found downstream of strong normal shock waves propagating into dusty gases. The solution indicates that the presence of the dust significantly affects the post-shock flow field. Owing to the dust, the relaxation zone will be longer than in the pure plasma case; the equilibrium values for the suspension pressure and density will be higher than the dust-free case, while the obtained values for the temperture, degree of ionization and velocity will be lower. The numerical solution was executed for shock Mach numbers ranging from 10 to 17. It was found that the thermal relaxation length for the plasma decreases rapidly withincreasing shock Mach number, while the thermal relaxation length for the suspension mildly increases with increasing M's. The kinematic relaxation length passes through a pronounced maximum at M = 12.5. Throughout the investigated range of Mach numbers, the kinematic relaxation length is longer than the suspension thermal relaxation length.

Descriptors :   *Dispersions, *Gases, *Dust, *Shock waves, *Relaxation, Mach number, Gas dynamics, Israel

Distribution Statement : APPROVED FOR PUBLIC RELEASE