Accession Number : ADP003111

Title :   Path-Independent Integrals in Dynamic Fracture Mechanics,

Corporate Author : GEORGIA INST OF TECH ATLANTA CENTER FOR THE ADVANCEMENT OF COMPUTATIONAL MECHANICS

Personal Author(s) : Atluri,S. N. ; Nishioka,T.

Report Date : OCT 1983

Pagination or Media Count : 13

Abstract : We first consider linear elastodynamic crack propagation under mixed mode non-steady conditions with an arbitrary velocity. Now we consider the problem of analyzing crack-propagation in an arbitrary body, the shape of which and the loading on which, we suppose, preclude any possibility of an analytical solution. Suppose that we have to use a numerical solution. Such a numerical solution may be based on a 'propagating singular-element' within which the asymptotic mixed made solution is embedded; and hence the K-factors can be evaluated directly, as demonstrated by the authors.

Descriptors :   *Materials, *Fracture(Mechanics), Crack propagation, *Paths, *Orientation(Direction), *Numerical analysis, Elastic properties, Dynamic loads, Steady state, Linearity, Kinetic energy, Equations, Shear stresses, Strain(Mechanics), Modulus of elasticity, Mathematical models, Time dependence, J integrals, Graphs, Models, Analytic functions

Distribution Statement : APPROVED FOR PUBLIC RELEASE